In Prequark Chromodynamics, quarks are composed of prequarks [Angultron (carries 1/3 electric charge) and Vacutron (vacuum)]. This Prequark Chromodynamics provides three very important results.

- Many well-known processes (such as moun decay or neutron decay) can be understood in a much better way.
**Why does proton have an incredible longer lifetime than the age of the universe?**- Both proton and neutron are, in fact, universal Turing computers. That is, they can give rise to biological life.

- I: Prequark Representations
- II: Examples of Prequark Chromodynamics
- III: Proton's stability and its decay mode
- IV: Experimental evidence
- V: Prequark Superstring Model gives rise to biological life
- VI: Why Prequark Superstring Model?
- Frequently Asked Questions

In Quantum Chromodynamics, the fundamental elementary particles are descirbed with the graph below.

There are also three quark colors. In Prequark theory, these three colors can be represented as three seats. For each seat, it can be either empty (Vacutron) or occupied (Angultron). Thus, only four different kinds of particles can be formed:

- A particle with all seats occupied by Angultrons carries one unit of electric charge, and it is named positron.
- A particle with two seats occupied by Angultrons carries 2/3 units of electric charge, and it is named UP quark.
- A particle with one seat occupied by an anti-Angultron carries -1/3 units of electric charge, and it is named Down quark.
- A particle with no seat occupied by Angultron carries zero units of electric charge, and it is named neutrino.

Furthermore, for a given quark, there are three ways to arrange the seating, and each way is distinguishable from others. Physicists have chosen three color labels to identify these differences. So, two quarks (Up and Down) evolve into six distinguishable quarks. The entire __present__ universe is constructed with these eight elementary particles (six quarks and two leptons).

Again, in Quantum Chromodynamics, there are three generations of quarks. These three generations are identified with three numbers, 1, 2 and 3. The prequark representations for those elementary particles are listed in table I and table II.

Generation | Particle name | Prequark Representation | Colors | Electric Charge |
---|---|---|---|---|

1st | Electron | -(A, A, A1) | colorless | one (1) |

1st | Neutrino | (V, V, V1) | colorless | 0 |

2nd | Muon | -(A, A, A2) | colorless | one (1) |

2nd | Muon neutrino | (V, V, V2) | colorless | 0 |

3rd | Tau | -(A, A, A3) | colorless | one (1) |

3rd | Tau neutrino | (V, V, V3) | colorless | 0 |

Generation | Particle name | Red | Yellow | Blue | Electric Charge |
---|---|---|---|---|---|

1st | Up quark | (V, A, A1) | (A, V, A1) | (A, A, V1) | 2/3 |

1st | Down quark | -(A, V, V1) | -(V, A, V1) | -(V, V, A1) | -1/3 |

2nd | Charm quark | (V. A. A2) | (A, V, A2) | (A, A, V2) | 2/3 |

2nd | Strange quark | -(A, V, V2) | -(V, A, V2) | -(V, V, A2) | -1/3 |

3rd | Top quark | (V, A, A3) | (A, V, A3) | (A, A, V3) | 2/3 |

3rd | Bottom quark | -(A, V, V3) | -(V, A, V3) | -(V, V, A3) | -1/3 |

Three notions shall be mentioned here.

First, the quark color corresponds to a special seating arrangement. I have chosen the first seat to be red, yellow for the second seat, blue for the third. The quark color is identified by the seat's color which is occupied by a minority prequark. For example, V is the minority prequark in (V, A, A1), and it sits on the red seat; so (V, A, A1) has a red color. (V, A, V1) is yellow because the minority prequark A sits on the yellow seat. The prequarks (A or V) themselves are colorless.

Second, quark colors obey the complementary rules: a) R + Y + B = White (colorless), b) R + Y = anti-B, etc.

Third, the generation of a quark or a lepton is represented by a number, 1, 2 or 3.
For convenience, the generation numbers are attached on the third seat. The prequarks and seats have no generation.

Now, we will discuss this neutron decay process in terms of the Standard Model first.

- Frame 1: The neutron (charge = 0) made up of up, down, down quarks.
- Frame 2: One of the the down quarks is transformed into an up quark. Since the down puark has charge of -1/3 and the up quark has a charge of 2/3, it follows that this process is mediated by a
__virtual__(W-) particle, which carries away a (-1) charge (thus charge is conserved!) - Frame 3: The new u quark rebounds away from the emitted W-. The neutron now has become a proton.

- Frame 4: An electron and antineutrino emerge from the virtual (W-) boson.
- Frame 5: The proton, electron, and the antineutrino move away from one another.

Note: This Standard Model was download from the www.pdg.lbl.gov web site in 1998.

In Prequark Chromodynamics, there are three important principles:

- All elementary particles (quarks, leptons and prequarks) cannot be viewed as an isolated entity. It is a part of space-time the same as the glider is a part of the Go board. That is, particles will have interaction with space-time.
- Vacuum can, indeed, turns into particles, but they must come in pairs, the particle and antiparticle pair to be exact.
- Although a u-quark can turn into a d-quark in the Standard Model via weak current, in this prequark theory, a (u - u bar) quark pair turn into a (d - d bar) pair, and vice versa.

The diagram below consists four detailed steps for neutron [ u (blue), d (-red), d(-yellow)] decay.

- First, a virtue (d - d bar) pair is squeezed out from space-time vacuum when neutron comes out a nucleus.
- Second, this neutron captures this virtue (d - d bar) pair to form a five quark mixture.
- Third, a (d (blue), -d (-yellow)) quark pair is transformed into a (u (yellow), -u (-blue)) quark pair.
- Finally, this five quark mixture decays into a proton (u (blue), u (yellow), d(-red)), an electron and an electron anti-neutrino.

The above diagram not only verifies the old theory that neutron decays into a proton, an electron, and an electron anti-neutrino, but it gives much more detailed information of how exactly this process works than Standard Model does.

- Prequark model shows the detailed quark color interaction and quark color conservation while the Standard Model does not address this issue explicitly.
- Prequark model shows the detailed quark and space-time interaction while the Standard Model used a d-quark to u-quark transformation concept which is acceptable on phenomenology but undesirable on theoretical ground.
- Prequark Model shows the detailed internal structure of (W-) particle, including its internal color interaction and its decaying process while the Standard Model does not provide any of these.

Yet, the Prequark Model is much simpler than the Standard Model. In short, this diagram of Prequark Model of neutron decay verifies the validity of the Prequark Chromodynamics. **The decay rate** of this neutron decay can be calculated with Equation Three.

The generations are also colors (genecolors). They obey the color complementary rules, such as 2 is the complement of (1,3) and 3 the complement of (1,2). In the 1st order, genecolor 2 can be represented as (1,3); in the 2nd order it can be represented as (1, (1, 2)). Table III shows the genecolors representation in terms of complementary rules.

Genecolor | 1st order | 2nd order | 2nd order (simplified) |
---|---|---|---|

1 | (2, 3) | (2, (1, 2)) | (2, 1, 2) |

2 | (1, 3) | (1, (1, 2)) | (1, 1, 2) |

3 | (1, 2) | (1, (1, 3)) | (1, 1, 3) |

In fact, the muon decay is caused entirely by this genecolor dynamics. Muon will decay into electron, electron neutrino and muon neutrino. That is, muon -(A, A, A2) becomes electron -(A, A, A1), electron anti-neutrino -(V, V, V1) and muon neutrino (V, V, V2). Obviously, the total Angultrons are conserved. The seemingly nonconservation of Vacutrons are also conserved because Vacutron is just a vacuum (nothingness). The most important event in this reaction is the transformation of genecolor 2 to (1, 1, 2) according to the genecolor complementary rules. Again, the Prequark Model is a better and a simpler model than the Standard Model.

The greatest shortcoming of SU(5) (Grand Unified Theory) is the failure of its proton decay prediction. After 20 years observation, no single proton decay case was recorded. The low limit for the proton lifetime is now set at about 10^33 years, which is incredibly longer than the age of the universe.

It is good news that proton don't decay. Otherwise, lives would have difficulty remaining alive. But, **why won't proton decay** under the current condition? SU(5) (Grand Unified Theory) does not have an answer but the **Prequark Model does**.

- First, we should review the differences between the two models about the neutron decay.
- In Standard Model, neutron decay starts out from some probability that one of the down quark of neutron transforms into an up quark, which is mediated by a virtual W- boson.

- In Prequark Model, things are very simple.
- The spacetime vacuum energy produces a down quark (d - d bar) pair.
- This d - d bar pair captures a down quark of neutron to form a three-quark mixture.
- Then, a d - d bar pair transforms into a u - u bar pair.
- Finally, by exchanging an Angultron and a Vacutron completes the decaying process.

**spacetime vacuum energy**driving the neutron to decay. Although the fluctuation amplitude of spacetime vacuum energy can be non-zero, the spacetime vacuum energy itself is always equal to zero; thus, it will not make any energy contribution to the system. However, the entropy of the end system will increase because of its involvement.

- In Standard Model, neutron decay starts out from some probability that one of the down quark of neutron transforms into an up quark, which is mediated by a virtual W- boson.
- Second, the proton decay mode of Prequark Model is shown in graph below. The proton decays into a positron and a pion (zero) [a d - d bar pair]. This decay mode is significantly different from the neutron decay mode in the following ways.
- This is an internal decay. That is, it does not require any external helps.
- Because it is an internal decaying process, the spacetime vacuum energy can produce zillion pairs of d quark or up quark and dance around the proton all day long but still cannot influence the proton decaying process one bit.
- Although
**both sides**of proton decaying process are electric charge conserved and color charge balanced, the left hand side has much lower energy, and thus much stabler. - That the only way to force the left side moves to the right side is when the spacetime vacuum energy could capture a proton's quark, that is, a high enough energy to break up the proton.
- That is, the Prequark Model can calculate the proton's decay rate with the following equation:

Proton's decay rate equals the probability that the**fluctuation amplitude of spacetime vacuum energy**equals to the**breaking up proton energy**.

Note: This level of spacetime vacuum fluctuation might exist during the Big Bang period.

Only by knowing the difference between an

**Predictions from the Prequark Model:
**

**Electron can split into fractional electric charge.****Each electron must be aligned by three magnetic flux quanta while it is in a magnetic field.****With the Prequark Superstring Model, the electron fine structure constant (alpha) can be calucated with the following equation.** Note: The measured Beta value is Beta = 137.0359895**Alpha = 1/Beta**

Beta = (1+ first order mixing + sum of the higher order mixing)

First order mixing = [1/Cos(A)]; the mixing angle A = 28.743 degree

Sum of the higher order mixing = 2 (1/48)[(1/64) + (1/2)(1/64)^2 + ... + (1/n)(1/64)^n +...]

Beta = 64 (1 + 1/Cos(A) + .0006561) = 137.0359**In Standard Model, the weak mixing angle is a free parameter. In Prequark Superstring Model, the weak mixing angle is a direct consequence of the theory and can be calculated**

In 1980, Klaus von Klitzing discovered quantum Hall effect. The Hall resistance varies stepwise with changes in magnetic field B. Step height is given by a physical constant divided by an integer i. The figure below shows steps for i = 2, 3, 4, 5, 6, 8 and 10. This is termed the __integer quantum Hall effect__. Klitzing was awarded Nobel Prize in Physics in 1985.

In 1982, Horst Stormer and Daniel Tsui discovered the __fractional quantum Hall effect__. In the figure below, the dashed diagonal line represents the classical Hall resistance and the full drawn diagonal stepped curve the experimental results. The magnetic fields causing the steps are marked with arrows. Note particularly the step first discovered by Stormer and Tsui (1/3) at the highest value of the magnetic field and the steps earlier discovered by von Klitzing (integers) with a weaker magnetic field. Stormer and Tsui subsequently found more and more new steps, both above and between the integers. All the new step heights can be expressed with the same constant as earlier but now divided by different fractions.

A year after the discovery of the fractional quantum Hall effect, Laughlin offered a theoretical explanation. According to his theory the low temperature and the powerful magnetic field compel each electron to capture **three** magnetic flux quanta and force the electron gas to condense to form a new type of quantum fluid. This new quantum fluid has many unusual properties. One of the most remarkable is that if one electron is added the fluid will be affected (excited) and a number of fractionally charged "quasiparticles" created. These quasiparticles (consist of composite particles) are not particles in the normal sense but a result of the common dance of electrons in the quantum fluid. Laughlin's quantum fluid has proved capable of explaining all the steps found experimentally. They three (Stormer, Tsui and Laughlin) were awarded Nobel Prize in Physics in 1998.

In Prequark Model, electron is a composite of three Angultrons which form a looped superstring. At fractional quantum Hall effect condition, those looped superstrings can split and rejoin with other electrons to form a composite particle just the same as the quasiparticle in the Laughlin's quantum fluid.

In Prequark Model, electron superstring can be splitted in a two-dimensional plane in following ways.

- (0, 3)
- (3, 0)
- (1, 2)
- (2, 1)
- (1, 0)
- (2, 0)
- (0, 1)
- (0, 2)

The picture below was on the cover of __Science__ magazine (June 22, 1990 issue). It is a computer graphics visualizing the Laughlin wave function for the nu = 1/3 FQHE state. The green balls represent electrons that are pinned momentarily in the two-dimensional plane by **three** magnetic flux quanta which appear as black arrows. The blue mountain represents the charge distribution of one free composited electron quasiparticle moving in the presence of the magnetic field and the potential of the other (green) electrons.

All lives need a bio-computer (a universal Turing computer) to process information. John Conway and others proved that the glider of Game of Life could be the base for building a Turing computer. If glider is also a graphic representation of some basic building blocks of mater (such as: proton or neutron), then laws of physics can give rise to biological life.

If Prequark Superstring Model cannot provide any additional insight more than other known theory or a combination of theories, it has no real value while it is true.Thus, why Prequark Superstring Model? Because, it provides the following additional insights.

- It contains and unifies mutually exclusive theories. Quark theory and traditional Superstring theory are mutually disconnected on the conceptual level, but Prequark Superstring Model unifies them. Quarks and leptons are superstrings in Prequark Superstring Model, and all quarks and leptons can be expressed in terms of Prequarks.
- Not only can Prequark Superstring theory duplicate the known results of other theories, but it provides simpler and better descriptions of nature, such as:
- Neutron decay.
- Muon or Tau decays.
- Proton decay or its non-decay.
- Fractional quantum Hall effect. Both Quark theory and Superstring theory cannot make any direct contribution on this.

- Prequark Superstring Model arise from Equation Zero which also give rise to a new Gravity theory, that is, the quantum theory and gravity are unified.
- Prequark Superstring Model makes contact with a new discipline (Artificial Life). That is, it shows that biological life could be the direct consequence of physics laws.

- Q: How prequark seats are arranged in space? If the seats are arranged in a straight line, it would means that color symmetry is broken. If they are arranged in a triangle with equal sides, then one cannot find any difference among 3 colors.

A:- Quark is a superstring. If quark has only two prequarks, it can only be a straight string. In Superstring theory, a superstring can be a straight string or a joined circle (triangle with equal sides). Only when quark has three prequarks, it can be a superstring.

Note 1: Traditional Superstring theory does not know the internal structure of quark, but Prequark Superstring theory does.

Note 2: Most of dynamic equations of Superstring theory works for prequark theory. - In prequark theory, quark is colored but has no intrinsic color. Quark has two forms in prequark representation, straight or circle. In the form of a circle, although quark is colored but which color state (red, yellow or blue) it is in cannot be known. Only when quark interacts with another quark, the circle form (having three quantum states) will collapse into a straight form which has a definite color state. This is called quantum collapse which is the direct consequence of quantum law.

Note 3: Because quarks are permanently confined, the circle state is always a virtue state.

Note 4: Because quark intrinsically can be any of the three colors, the uncertainty principle permits it to change to another color. But the color complementary rule forces its confined quark partner changing into a different color when one quark changes the color by quantum uncertainty. In Standard Model, this phenomenon is explained with a**gluon**system of SU(3) color symmetry.

Note 5: Quark colors are conserved in the prequark representation of neutron decay. That is, Prequark Superstring theory preserves the SU(3) color symmetry which is equivalent to the concept of**gluon**.

Note 6: Both quark colors and genecolors are attributes of prequark seats which are, in fact, space-time. That is, all particles (proton or quarks, etc) are deeply imbedded in or permanently confined to space-time.

Note 7: The prequark representation of proton or neutron is very much similar to glider. Gliders roam in a two-dimensional world sheet (see http://www.iewu.edu/Nfa.htm) which does not have the anti-particle world. On the contrary, protons or neutrons roam in a multi-dimensional world sheet (see question 6). Both particles and anti-particles are imbedded in this multi-dimensional world sheet. The internal structure of elementary particles has 7-dimensions (3 quark colors, 3 genecolors and one colorless color). That is, with the 4 visible space-time dimensions, the universe has a total of 11 (4 + 7) dimensions.

- Quark is a superstring. If quark has only two prequarks, it can only be a straight string. In Superstring theory, a superstring can be a straight string or a joined circle (triangle with equal sides). Only when quark has three prequarks, it can be a superstring.
- Q: In Standard Model, neutron decay is mediated via weak current (W- boson), and W boson has been observed. Why does W boson not appear in the prequark representation of neutron decay?

A: During the -(V, A) exchange,**this mixture is W boson**. Prequark model gives much more detailed and clear picture. - Q: Proton is not composite of only three quarks but includes gluons, spin, electric charges, weak charge, etc.

A: Spin and electric charges are carried by Angultron. The**gluons**are consequences of SU(3) color symmetry. As long as the SU(3) color symmetry is preserved in the Prequark theory, the gluons are imbedded in it, of course, with different expressions. - Q: Does prequark theory predict any new particles?

A: Prequark Superstring theory see quarks which are composites of prequarks. However, prequarks are not particles in the traditional sense, such as proton or quark. As for the traditional particles, prequark theory does not predict any new "elementary" particle. - Q: Is prequark a particle?

A: No. Prequark is not a particle in any sense. How can a vacuum (Vacutron) be a particle? Prequark itself is not even a superstring; quark is. Prequarks are attributes of the space-time world sheet. We can view Vacutron as the valley bottom of the space-time world sheet, Angultron the summit of the hill. When the two sections (two seats) of a space-time superstring lay on the summit of two hills and one lay on the bottom of the valley, this superstring is a up-quark. If the first section (seat) is on the bottom of the valley, it is a red up-quark, etc.. When all three sections (seats) of a space-time superstring lay on the summit of three hills, it is an electron. When all three sections of a space-time superstring lay on the bottom of three valleys, it is a neutrino. - Q: How can this space-time world sheet house three generations of particles?

A:

The space-time equation (Equation Zero) demands that time superstring (a time-sheet itself) to include the imaginary time. It also demands that time quanta cannot be reduced to zero length (a continuous point) because of being a superstring. That is, this time sheet is, in fact, a donut which has one hole at origin and another hole at infinity. See graph on the left.

Equation Zero again demands that this time quanta moves in an Archimedes spiral fashion to form a time cone which again is a donut. See graph on the right.That is, the space-time world sheet is formed by two donuts.

Every donut has the following topological properties:- It can be viewed as a ball with two punched holes (two poles). And it has two surfaces, the external ball surface and the internal ball surface. The internal ball surface could be hidden from view.
- There is a four (4) color theorem for balls. That is, all variations (or events) on ball surface can be identified with 4 colors. For a donut,
**three additonal colors**are needed for the internal ball surface.

The graph on the left shows the space-time world sheet. It can be viewed as a ball which contains two donuts. The tube itself is the first donut, and its internal surface contains three quark colors.

The tube "forms" a second donut, and its internal surface cannot truly be seen, contrary to the graph. The internal surface of this second donut contains three genecolors.

The visible space-time world sheet is the external ball surface which needs four (4) colors, the ordinary 4 space-time dimensions.

The holes link this world sheet to**Nothingness**which must also be counted as one dimension, the colorlessness demanded by the color complementary rule. Thus, the space-time world sheet has a total of eleven (11) dimensions (4 visible space-time dimensions, 3 quark colors, 3 genecolors [generations], and one colorlessness dimension).

The graph below is the summary of above concepts

- Q: How can this space-time world sheet make up with or by two donuts? Can these 11 dimensions be visualized in terms of geometry instead of quark colors?

A: First, a garden hose is a donut. When we wind this garden hose into a ball, it actually form another donut.

Second, a garden hose (or a donut) has (or needs) 7 dimensions. A garden hose has two spaces, and they cannot know each other.**Every point**on the garden hose needs**two sets**of coordinates. For observer standing outside the garden hose, he sees a point on the garden hose with a set of coordinates (Xe, Ye, Ze). The**same point**viewed from the inner space of the garden hose has (or must use) a new set of coordinates (Xi, Yi, Zi). Then, the empty space around the garden hose is not part of the garden hose world sheet, and it has no coordinate.**All points**of this empty space cannot be**distinguished**among one another, that is, they can be viewed as the same point. However, this empty space point must also be one dimension, E (nothingness). Thus, a garden hose (or a donut) has (or must have) 7 dimensions.

Third, when this garden hose winds itself into a donut, the external coordinates further divides into two sets (Xei, Yei, Zei) and (Xee, Yee, Zee). This garden hose world sheet now has (or needs) 10 dimensions -- (Xi, Yi, Zi), (Xei, Yei, Zei), (Xee, Yee, Zee), and E (nothingness).

Fourth, the above garden hose world sheet is a static world sheet. On the contrary, the time quanta is a dynamic garden hose, and it has a clearly defined moving direction. This must be also a dimension, T the ordinary time.

Finally, the space-time world sheet has (or needs) 11 dimensions.- (Xee, Yee, Zee) and T are ordinary 4 sapce-time dimensions.
- (Xei, Yei, Zei) are three generations (genecolors).
- (Xi, Yi, Zi) are three quark colors.
- E (nothingness) is pure vacuum, the Nothingness or Colorlessness.

- Q: Why should the time quanta be like a garden hose?

A:

The Schrodinger equation has the space symmetry. When Dirac rewrote it into two first order equations, he predicted the anti-particles. If (of course , it was a**big if**) Schrodinger equation also has time symmetry, the imaginary time must be introduced. Again, if (another**big if**) time is a quanta, it cannot be reduced to zero, a continuous point, that is, the origin of time sheet must have a hole. The graph on the left shows that time quanta must be like a garden hose. How about these two**big if**? The theory developed by these two**big if**has worked out very well, not only makes contact with the established physics but makes many more predictions and connections.

- Q: Regardless of what prequarks really are, they form a great notation system for quark model. But, what is the benefit to have a new notation system for an old model?

A: One of the 11 dimension of the space-time world sheet is E (nothingness) which is not clearly identified by and with Quark Model, but the Vacutron (the vacuum, the nothingness) clearly represents it in Prequark Superstring model. - Q: Can we, then, reduce Prequark system (V, A) to a simpler binary (0, 1) system?

A: Vacutron is identical to**0**. However, Angultron is a bit more complicated than**1**. Angultron is a trisect**ing**angle. It will take forever to trisect an angle. Thus, Angultron is a dynamic process which causes everybody's**head spin**. Very funny, we do call it**spin**. When this spin h(bar) moves with light speed**in time**, it expresses electric charge. When a superstring lays on 2 or 3 of them, that superstring becomes a particle. The residual binding energy (resulted from mixing angles) of those prequarks is expressed as**mass**, although the mass of prequarks cannot be defined. - Q:What are new in Prequark Superstring theory comparing to the other theories?

A:- Quark has internal structure, made of prequarks.
- Quark colors are attributes of prequark seats which have SU(3) color symmetry. Observable quark color is not an intrinsic quality of quark but a result of quantum collapse.
- Quark generations are new color charges.
- Superstring theory does not know the internal structure of quark, but Prequark theory does.
- The prequark representation of proton and neutron has the possibility to be a base for building a Turing computer according to Conway's theory, that is, prequark theory could make a new breakthrough on the issue of the rise of biological life in terms of physics laws.

- Q: Can Prequark Superstring Theory be shown in a simple graphic way?

A:====> ## Quark as Prequark Superstrings